

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 2183–2185

Tetrahedron Letters

Regioselective synthesis of 2-acetyl- and 2-alkoxycarbonyl-3-(trifluoromethyl)phenols by [3+3] cyclization of 1,3-bis-silyl enol ethers with 4-ethoxy- and 4-silyloxy-1,1,1-trifluoroalk-3-en-2-ones

Constantin Mamat,^a Thomas Pundt,^a Andreas Schmidt^a and Peter Langer^{a,b,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
^bLeibniz Institut für Katalyse e. V. an der Universität Bostock, Albert Einstein Str. 20a, 18050 Bostock ^bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Received 18 November 2005; revised 19 January 2006; accepted 23 January 2006

Dedicated to Professor Ralf Miethchen on the occasion of his 65th birthday

Abstract—2-Acetyl- and 2-alkoxycarbonyl-3-(trifluoromethyl)phenols were prepared by [3+3] cyclization of 1,3-bis-silyl enol ethers with 4-ethoxy- and 4-silyloxy-1,1,1-trifluoroalk-3-en-2-ones. 2006 Elsevier Ltd. All rights reserved.

(Trifluoromethyl)benzenes are present in a great variety of pharmaceuticals,^{1,2} pesticides and ligands.^{[3](#page-2-0)} The trifluoromethyl group strongly increases the lipophilicity of arenes and heterocycles.¹ In fact, functionalized (trifluoromethyl)benzenes represent important building blocks for the development of novel lead structures in medicinal chemistry. They have been prepared mainly by trifluo-romethylation of aromatic compounds^{[4](#page-2-0)} or by reactions of appropriate fluorine-containing building blocks.[5](#page-2-0) However, these reactions often suffer from low regioselectivities. Therefore, the development of new strategies for the synthesis of functionalized benzenes with a trifluoromethyl group located at a specific position is of considerable current interest. Some years ago, Chan and co-workers reported 6 an elegant approach to salicylates based on cyclization of 1,3-bis-silyl enol ethers $(d^4$ -synthons)^{[7](#page-2-0)} with 3-(silyloxy)alk-2-en-1-ones.^{[8](#page-2-0)} Very recently, Kostyuk and co-workers reported the synthesis of 3,5-bis(trifluoromethyl)anilines by cyclization of enamines with 1,1,1,5,5,5-hexafluoroacetylacetone.^{[9](#page-2-0)}

Herein, we report a new synthesis of 2-acetyl- and 2-alkoxycarbonyl-3-(trifluoromethyl)phenols based on $[3+3]$ cyclizations of 1,3-bis-silyl enol ethers with 4-ethoxyand 4-silyloxy-1,1,1-trifluoroalk-3-en-2-ones. From a preparative viewpoint, these transformations offer a

Scheme 1. Possible mechanism of the formation of 4a.

Keywords: Arenes; Cyclizations; Organic fluorine compounds; Silyl enol ethers.

^{*} Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412; e-mail: peter.langer@uni-rostock.de

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.01.111

convenient and regioselective approach to functionalized (trifluoromethyl)phenols, which are not readily available by other methods. The starting materials—3 alkoxyalk-2-en-1-ones—are readily available by acylation of enol ethers.

1,1,1-Trifluoro-4-silyloxypent-3-en-2-one (2a) and 1,1,1, 5,5,5-hexafluoro-4-silyloxypent-3-en-2-one (2b) were prepared by silylation of the corresponding 1,3-di-ketones according to a literature procedure.^{[9](#page-2-0)} The $TiCl₄$ mediated cyclization of 2a with 1,3-bis-silyl enol ethers 3a—prepared from methyl acetoacetate—afforded the desired 2-ethoxycarbonyl-3-(trifluoromethyl)phenol 4a ([Scheme 1\)](#page-0-0).[†] The regioselective formation of the product can be explained—following general observations by Chan et $aI.6$ $aI.6$ —by conjugate addition of the terminal carbon atom of 3a onto 2a and subsequent cyclization by attack of the central carbon atom of the bis-silyl enol ether onto the carbonyl group (Mukaiyama aldol reaction).

The TiCl₄ mediated cyclization of 2a with 1,3-bis-silyl enol ethers 3b–e—prepared from ethyl acetoacetate, acetylacetone, ethyl 3-oxopentanoate and ethyl 3-oxohexanoate—afforded the desired 2-alkoxycarbonyl-3- (trifluoromethyl)phenols 4b,d,e and the 2-acetyl-3-(trifluoromethyl)phenol 4c (Scheme 2, Table 1). The cyclization of 1,3-bis-silyl enol ether 3c with 2b afforded 2-acetyl-3,5-bis(trifluoromethyl)phenol (4f). The formation of regioisomeric products was not observed. However, the concentration of the starting materials proved to be an important parameter during the optimization.

The 4-ethoxy-1,1,1-trifluorobut-3-en-2-ones 6a–c were prepared by reaction of enol ethers with trifluoroacetic anhydride according to a literature procedure.^{[10](#page-2-0)} The $TiCl₄$ mediated cyclization of $6a-c$ with 1,3-bis-silyl enol ethers $3a-e$ afforded the 3-(trifluoromethyl)phenols $7a-g$

Scheme 2. Synthesis of $4a-f$. Reagents and conditions: (i) Me₃SiCl, NEt_3 , C_6H_6 , 20 °C, 3 d; (ii) TiCl₄, CH_2Cl_2 , $-78\rightarrow 20$ °C, 20 h.

^a Isolated yields.

([Scheme 3,](#page-2-0) [Table 2](#page-2-0)).^{\ddagger} All products were formed with very good regioselectivity. The reactions proceeded by regioselective attack of the terminal carbon atom of the 1,3-bis-silyl enol ether onto the carbon atom attached to the ethoxy group of the enone and subsequent cyclization by attack of the central carbon atom of 3 onto the carbonyl group[.11](#page-2-0) During the optimization of the cyclization reaction, the concentration of the starting materials and the use of an excess of 3 (2.0 equiv) played an important role. Only moderate yields were obtained in some cases, since non-dehydrated cyclic products

[†]General procedure for the synthesis of $4a$ –f: To a CH₂Cl₂ solution (5 mL) of 1,3-bis-silyl enol ether 3 (2.4 mmol) and 4-(silyloxy)alk-3 en-2-one 2a,b (2.2 mmol) was added TiCl₄ (2.4 mmol) at -78 °C under argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20° C during 14 h and, subsequently, a saturated aqueous solution of NaHCO₃ (20 mL) was added. The organic layer was separated and extracted with diethyl ether $(3 \times 20 \text{ mL})$. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n-heptane/ $EtOAc = 20:1$).

²⁻⁽Ethoxycarbonyl)-5-methyl-3-(trifluoromethyl)phenol (4b). Starting with 2a and 3b, 4b was isolated as a yellow solid $(220 \text{ mg}, 40\%)$, $mp = 28 \degree C$; $R_f = 0.48$ (*n*-heptane/EtOAc = 2:1). ¹H NMR $(250 \text{ MHz}, \text{CDCl}_3): \delta = 10.90 \text{ (s, 1H, OH)}, 7.13 \text{ (s, 1H, H-4)}, 7.01$ $(s, 1H, H-6), 4.43 (q, 2H, \frac{3}{J} = 7.2 Hz, OCH_2CH_3), 2.38 (s, 3H, CH_3),$ 1.41 (t, 3H, $3J = 7.2$ Hz, OCH₂CH₃). ¹³C NMR (63 MHz, CDCl₃): $\delta = 169.3$ (C=O), 162.1 (C-1), 145.0 (C-5), 130.1 (q, $J_{\text{C,F}} = 34$ Hz, C-3), 123.2 (q, $J_{\text{C,F}} = 275 \text{ Hz}$, CF₃), 122.0 (C-6), 120.4 (q, $J_{\text{C,F}} = 7 \text{ Hz}$, C-4), 108.6 (C-2), 62.3 (CH₂), 21.5 (CH₃), 13.4 (CH₂CH₃). ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -58.0$ (s, CF₃). Anal. Calcd for C₁₁H₁₁F₃O₃: C, 53.23; H, 4.47. Found: C, 52.85; H, 4.69. All new compounds gave correct spectroscopic and analytical and/or high resolution mass data.

[‡]General procedure for the synthesis of 7a–g: To a CH₂Cl₂ solution (10 mL) of 1,3-bis-silyl enol ether 3 (7.7 mmol) and 6 (3.8 mmol) was added $TiCl_4$ (3.8 mmol) at $-78 \degree C$ under argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20 $\mathrm{^{\circ}C}$ during 14 h and, subsequently, an aqueous solution of HCl (20 mL, 10%) was added. The organic layer was separated and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were dried $(Na₂SO₄)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n -heptane/EtOAc = 10:1).

Methyl 5-ethyl-6-(trifluoromethyl)salicylate (7f). Starting with 6c (750 mg, 3.8 mmol), 3b (2.00 g, 7.7 mmol) and $TiCl_4$ (1.2 mL, 3.8 mmol), 7f was isolated as a colourless solid (670 mg, 71%), $mp = 84 °C$; $R_f = 0.46$ (*n*-heptane/EtOAc = 2:3). IR (Nujol): $\tilde{v} = 3663$ (w), 1710 (s) cm⁻¹. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.14$ (br, 1H, OH), 7.32 (d, 1H, $^{3}J = 8.5$ Hz, H-6), 7.09 (d, 1H, $^{3}J = 8.5$ Hz, H-6), 7.09 (d, 1H, $^{3}J = 8.5$ Hz, H 5), 3.03 (c, 3H, OMe), 2.75 (m, 2H, $^{3}J = 7.3$ Hz $J = 8.5$ Hz, H-5), 3.93 (s, 3H, OMe), 2.75 (m, 2H, $3J = 7.3$ Hz, CH₂CH₃), 1.23 (t, 3H, ³J = 7.3 Hz, CH₂CH₃). ¹³C NMR (62 MHz, CDCl₃): $\delta = 169.6$ (C=O), 155.2 (C-1), 136.5 (C-4), 135.4 (C-5), 127.2 $(q, J_{C,F} = 31 \text{ Hz}, C-3)$, 124.1 $(q, J_{C,F} = 276 \text{ Hz}, CF_3)$, 120.8 (C-6), 115.2 (C-2), 53.1 (OMe), 26.6 (CH_2CH_3), 16.1 (CH_2CH_3). ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -54.4$ (CF₃). MS (EI, 70 eV): m/z (%) = 248 (27) [M⁺], 217 (29) [M⁺-OMe], 216 (100) [M⁺-HOMe]. HRMS (EI): calcd for $C_{11}H_{11}F_3O_3$: 248.0655; found: 248.0651.

Scheme 3. Synthesis of 7a–g. Reagents and conditions: (i) CH_2Cl_2 , pyridine, $0 °C$; (ii) TiCl₄, CH₂Cl₂, $-78\rightarrow 20 °C$, 20 h.

Table 2. Products and yields

3	6		R^1	R^2	R^3	Yield (7) $(\%)^a$
b	a	a	Н	Н	OEt	30
d	a	b	Н	Me	OEt	20
e	a	c	Н	Et	OEt	26
a	b	d	Me	Н	OMe	45
$\mathbf c$	b	e	Me	Н	Me	60
a	c		Et	Н	OMe	71
c	c	g	Et	Н	Me	40

^a Isolated yields.

were formed as side products. The latter could not be transformed into the desired phenols by treatment with acid.

In conclusion, we have reported a new approach to 2-acetyl- and 2-alkoxycarbonyl-3-(trifluoromethyl) phenols based on [3+3] cyclizations of 1,3-bis-silyl enol ethers with 4-ethoxy- and 4-silyloxy-1,1,1-trifluoroalk-3-en-2-ones.

Acknowledgements

Financial support by the state of Mecklenburg-Vorpommern (scholarship for A.S. and Landesforschungsschwerpunkt 'Neue Wirkstoffe und Screeningverfahren') is gratefully acknowledged.

References and notes

- 1. (a) Fluorine in Bioorganic Chemistry; Filler, R., Kobayasi, Y., Yagupolskii, L. M., Eds.; Elsevier: Amsterdam, 1993; (b) Filler, R. Fluorine Containing Drugs in Organofluorine Chemicals and Their Industrial Application; Pergamon: New York, 1979; Chapter 6; (c) Hudlicky, M. Chemistry of Organic Fluorine Compounds; Ellis Horwood: Chichester, 1992.
- 2. (a) Ryckmans, T.; Balancon, L.; Berton, O.; Genicot, C.; Lamberty, Y.; Lallemand, B.; Pasau, P.; Pirlot, N.; Quere, L.; Talaga, P. Bioorg. Med. Chem. Lett. 2002, 12, 261; (b) Malamas, M. S.; Sredy, J.; Gunawan, I.; Mihan, B.; Sawicki, D. R.; Seestaller, L.; Sullivan, D.; Flam, B. R. J. Med. Chem. 2000, 43, 3995.
- 3. Liedtke, J.; Loss, S.; Widauer, C.; Grützmacher, H. Tetrahedron 2000, 56, 143.
- 4. (a) Paratian, J. M.; Sibille, S.; Perichon, J. J. Chem. Soc., Chem. Commun. 1992, 53; (b) Tordeux, M.; Langlois, B.; Wakselman, C. J. Chem. Soc., Perkin Trans. 1 1990, 2293.
- 5. Ding, W. Y.; Pu, J. Q.; Zhang, C. M. Synthesis 1992, 635.
- 6. Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534.
- 7. For a review of 1,3-bis-silyl enol ethers, see: Langer, P. Synthesis 2002, 441.
- 8. For [3+3] cyclizations from our laboratory, see: (a) Bose, G.; Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Görls, H.; Langer, P. J. Org. Chem. 2004, 69, 9128; (b) Nguyen, V. T. H.; Langer, P. Tetrahedron Lett. 2005, 46, 815; (c) Nguyen, V. T. H.; Langer, P. Tetrahedron Lett. 2005, 46, 1013; (d) Nguyen, V. T. H; Bellur, E.; Appel, B.; Langer, P. Synthesis, in press.
- 9. (a) Volochnyuk, D. M.; Kostyuk, A. N.; Sibgatulin, D. A.; Chernega, A. N.; Pinchuk, A. M.; Tolmachev, A. A. Tetrahedron 2004, 60, 2361; (b) Volochnyuk, D. M.; Kostyuk, A. N.; Sibgatulin, D. A.; Chernega, A. N. Tetrahedron 2005, 61, 2839.
- 10. (a) Hojo, M.; Masuda, R.; Sakaguchi, S.; Takagawa, M. Synthesis 1986, 1016; (b) Colla, A.; Martins, M. A. P.; Clar, G.; Krimmer, S.; Fischer, P. Synthesis 1991, 483; (c) Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsuo, S. Chem. Lett. 1976, 499.
- 11. The opposite regioselectivity was observed for the reaction of 6a with the monoanion of acetylacetone (a d^2 -synthon): Zanatta, N.; Barichello, R.; Bonacorso, H. G.; Martins, M. A. P. Synthesis 1999, 5, 765.